Biomechanics and mechanobiology of trabecular bone: a review.
نویسندگان
چکیده
Trabecular bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. Studying the mechanical properties of trabecular bone is important, since trabecular bone is the main load bearing bone in vertebral bodies and also transfers the load from joints to the compact bone of the cortex of long bones. This review article highlights the high dependency of the mechanical properties of trabecular bone on species, age, anatomic site, loading direction, and size of the sample under consideration. In recent years, high resolution micro finite element methods have been extensively used to specifically address the mechanical properties of the trabecular bone and provide unique tools to interpret and model the mechanical testing experiments. The aims of the current work are to first review the mechanobiology of trabecular bone and then present classical and new approaches for modeling and analyzing the trabecular bone microstructure and macrostructure and corresponding mechanical properties such as elastic properties and strength.
منابع مشابه
An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence.
Interbody fusion device subsidence has been reported clinically. An enhanced understanding of the mechanical behaviour of the surrounding bone would allow for accurate predictions of vertebral subsidence. The multiaxial inelastic behaviour of trabecular bone is investigated at a microscale and macroscale level. The post-yield behaviour of trabecular bone under hydrostatic and confined compressi...
متن کاملA sclerostin-based theory for strain-induced bone formation.
Bone formation responds to mechanical loading, which is believed to be mediated by osteocytes. Previous theories assumed that loading stimulates osteocytes to secrete signals that stimulate bone formation. In computer simulations this 'stimulatory' theory successfully produced load-aligned trabecular structures. In recent years, however, it was discovered that osteocytes inhibit bone formation ...
متن کاملPrediction of apparent trabecular bone stiffness through fourth-order fabric tensors.
The apparent stiffness tensor is an important mechanical parameter for characterizing trabecular bone. Previous studies have modeled this parameter as a function of mechanical properties of the tissue, bone density, and a second-order fabric tensor, which encodes both anisotropy and orientation of trabecular bone. Although these models yield strong correlations between observed and predicted st...
متن کاملTrabecular bone: light as a feather, stiff as a board.
Trabecular bone is a crucial and unique load-bearing tissue in the skeleton found near the ends of long bones and in the vertebral bodies. Trabecular bone has the ability to rapidly adapt to the mechanical loading environment by optimizing its mass and structure in order to bear high loads with as little bone tissue as possible, allowing bones to remain strong while minimizing their weight. Mea...
متن کاملMechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype.
Most in vivo studies addressing the skeletal responses of mice to mechanical loading have targeted cortical bone. To investigate trabecular bone responses also we have developed a caudal vertebral axial compression device (CVAD) that transmits mechanical loads to compress the fifth caudal vertebra via stainless steel pins inserted into the forth and sixth caudal vertebral bodies. Here, we used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanical engineering
دوره 137 1 شماره
صفحات -
تاریخ انتشار 2015